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Abstract

In the broadest sense, the benefits of modeling are at least
threefold: (1) cycle time compression through reduced
prototyping and experimentation; (2) identification of non-
obvious optimal solutions that might be missed by
empirical testing over a restricted range; and (3) education
and training of practitioners through virtual experimentation.
At Eastman Kodak Company, predictive modeling of image
quality has proved to be of great value in all three regards
and has been regularly used in formulating business
strategies, guiding design decisions, establishing product
aims, budgeting system tolerances, and benchmarking. This
paper will provide an overview of selected topics pertaining
to image quality modeling, including: (1) definition of
numerical scales of image quality tied to physical standards;
(2) design of low-noise judging techniques calibrated to these
scales and suitable for untrained observers; (3) development
of a method for combining results from single-attribute
experiments to predict multivariate quality; (4) generation of
objective metrics correlating with perceptual attributes of
conventional and digital imaging systems; (5) construction
of Monte Carlo models that predict image quality
distributions based on imaging system specifications; and
(6) verification of model predictions through independent
expert assessment of images from prototype handout and
customer intercept studies.

Introduction

The nature and scope of imaging is undergoing dramatic
change as we enter the digital imaging age. Portions of the
formerly distinct photographic, electronic, software,
television, computer, and printing industries are converging
into a more generic imaging industry. The ways in which
images are used are increasing in number and diversity, and
the flexibility associated with digital imaging is leading to
an increasingly complex field of opportunity. The rapid
product introduction cycle time of the electronics industry
sets the standard for the new imaging industry, leading to an
urgent need to streamline strategic, design, and development
processes. In this more horizontal industry, the ability to
effectively exchange specifications and evaluations based on
a common framework will become critical to the success of
supplier-manufacturer and partnering relationships. Each of
these industry trends is leading to an increasingly acute need
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for methods of quantifying, communicating, and predicting
perceived image quality.

At Eastman Kodak Company, a consistent and
integrated approach to image quality characterization and
prediction has been developed and integrated into product
development and strategic planning processes. Previously,
information pertaining to the company's image quality
research has usually been treated as proprietary in nature, but
with the emergence of a more interactive imaging industry,
disclosure of some aspects of the work has been deemed
desirable. This paper will provide an overview of our
approach to image quality and modeling by addressing the
following topics: establishing image quality standards;
performing psychophysical experiments calibrated thereto;
designing objective metrics correlating to perceptual
attributes; predicting the overall quality of samples affected
by multiple attributes based on knowledge of the impact of
each attribute in isolation; constructing software to enable
powerful system image quality modeling of capability and
performance; and verifying accuracy of predictions so
generated. Most of the research in this field has been in
support of the development and refinement of powerful
software models that predict the performance of general
imaging systems, in the hands of consumers, based on
engineering specifications, component measurements, usage
factors, etc. The following presentation, given by R. B.
Wheeler,1 will provide practical examples of the utility of
such predictive models of image quality.

Establishing Image Quality Standards

Physical standards are an important part of image quality
characterization. A primary standard, with a wide range of
quality and a variety of scene content, can serve to anchor a
numerical image quality rating scale. Primary standards can
be initially rated by trained experts, using interval or ratio
scales. These scales should be tested for uniformity of JND
(just noticeable difference) values by forced-choice paired
comparison experiments across the full range spanned by the
physical standard, and adjustments made as necessary to
achieve a constant JND increment (interval scale) or
percentage (ratio scale). This simplifies subsequent
interpretation of the scale by permitting assessment of the
significance of differences in a trivial manner. The resulting
values should be correlated with assessments by customers
to ensure robust behavior. Samples exhibiting high
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variability in assessments by either trained experts or
customers should be excluded. Samples falling especially
far from a regression curve through the consumer vs
trained expert assessment data may include attributes
viewed as being of different importance to the two groups.
While indicating a potential area for further research, such
samples might bias assessments made against the standard,
and so should be eliminated if possible.

Primary and secondary standards may be either univar-
iate (consisting of images varying only in a single attri-
bute) or multivariate (with quality affected by covarying
attributes). Univariate standards are useful for evaluating
both overall quality and the impact on quality of an
individual attribute in the presence of other attributes. In
addition, because their quality varies with a single
attribute, generation of arbitrary quality positions through
image simulation is facilitated. Secondary standards for
specific purposes may be more restricted in quality range
and/or scene content than primary standards, and may
contain different attributes. The numerical quality ratings
of images assessed against the standards should not vary
systematically with the sensitivity of the observer making
the assessment in most cases. Generally observers who are
more sensitive will see larger quality differences between
both the test samples and standards samples, which effects
approximately cancel.

Once defined, the numerical image quality rating scale
should be invariant with time, although the physical
standards associated with the scale may need to be updated
occasionally to reflect current imaging technologies and
applications. In contrast, the degree of satisfaction or
acceptability associated with a particular value on the
rating scale will change with time because customer
expectations are influenced by advances in imaging
technology and changes in intended application. Because
most analyses (and customer purchases) involve
comparison of a pertinent reference (control) system with a
test system, changes in customer expectations may be
reflected in the choice of the reference system. If desired,
customer expectations can be monitored periodically by
category sort experiments using adjectives such as good,
fair, poor, etc., or classifications such as acceptable vs
unacceptable. The selection of adjectives by consumers is
influenced by the samples presented (a range effect), so a
representative selection of images for the application of
interest should be sought.

Calibrated Psychophysical Experiments

A quality ruler is a mechanism for making precise, rapid,
visual assessments of quality that are calibrated against a
standard scale. Quality rulers comprise a series of images
of known quality that vary systematically, usually in a
single perceptual attribute. The images are spaced by one
to several JNDs and usually span a wide range of quality.
The viewing conditions associated with the quality ruler
must be constrained so that the quality calibration is not
compromised. For example, if the ruler samples vary in
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image structure (e.g., sharpness or noisiness), the viewing
distance must be fixed. Quality rulers may be organized in
sets with each ruler depicting a different scene, which is
individually calibrated for quality. The scenes should span
a suitable range of subject matter and image character-
istics. The attribute varying in a quality ruler ideally should
be capable of strongly influencing quality; should not
possess high observer or scene variability; and should be
correlated strongly with routinely available objective
measurements. One result of a quality ruler experiment is
that the samples assessed constitute a set of derived
(secondary) standards. These may, in turn, be assembled as
new quality rulers.

Figure 1. Hardcopy Quality Ruler

One implementation of a quality ruler that we have
used extensively involves a sliding ruler with slots for
reflection prints, allowing the test sample and a particular
ruler print to be compared while adjacent to each other, in
the same lighting and at the same viewing distance,
without the observer moving (excluding using his or her
hands to slide the ruler). Figure 1 shows a hardcopy quality
ruler setup. The test image (above) is compared to the
ruler, which slides in a Teflon track so that the image being
compared to the test sample can be set directly below it.
Viewing distance is controlled by a padded headrest.
Lighting is at approximately 45-degree incidence and
viewing is normal to the image. The black cloth reduces
stray light, as does the dark lab coat worn by the observer.

Another implementation of a quality ruler that we use
particularly for studies of color and tone reproduction
involves two matched high-quality monitors. The observer
indicates which of a pair of images (one test image and one
ruler image) is higher in quality, and software selects a
new ruler image to be displayed depending on the answer
given, so as to converge on the ruler position of
equivalency.

In addition to being used to determine overall quality,
quality rulers may be used to reliably assess the attribute
represented in the ruler. For example, if a quality ruler is
based on variations of noise, it is also an effective tool in
assessing the noise level in images. This is often helpful in
separating multivariate phenomena. When using a quality
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ruler to evaluate the single attribute varying in the ruler, the
task involves selective appearance matching. This is in
marked contrast to the case in which overall quality is
assessed, where it is critical that observers avoid simply
matching appearance, and instead try to evaluate each image
based on its merits. Although in research applications we
normally produce test samples that match the quality rulers
in scene content through digital image simulation,
surprisingly, the quality rulers have been found to work
equally well in evaluating images with different scene
content.

The RMS (root mean square) uncertainty in a single
quality ruler assessment (one observer rating one sample) is
estimated to be about 2.5 JNDs, compared to a theoretical
minimum of one JND. Limited data indicates higher values
for magnitude estimation (ca. 4 JNDs) and category sort (ca.
8 JNDs), as might be expected based on the number of
reference samples provided (many in a quality ruler, usually
one in magnitude estimation, and zero in category sort).
From the 2.5 JND single-assessment RMS error value,
estimates of precision of the mean may be made for pooled
data from different numbers of observers and scenes. For
example, if 6 assessments are pooled, the standard error of
the mean would be approximately 2.5/√6 = 1.0 JNDs.
Typical quality ruler assessment times are about two images
per minute (compared to 4 per minute for category sort and
an intermediate number for magnitude estimation), with
about 85% of observers falling within 30% of the mean
figure.

Design of Objective Metrics

One of the primary reasons for doing calibrated
psychophysical testing is to facilitate generation and
verification of objective metrics that strongly correlate with
an attribute's impact on quality. When such a metric is
successfully derived, it allows replacement of perceptual
assessments by predictive analysis, which is usually faster,
less expensive, and more robust because it is based on
calibrated data from many observers and scenes. Objective
metrics should be designed in a fashion that is perceptually
relevant (as opposed to simply being a mathematical fit) to
improve the likelihood that extrapolated behavior will be
accurate. They should be verified for a range of practical and
limiting cases so that failure modes can be identified and
perhaps reduced through refinement of the metric. Where
possible, objective metrics should be defined in a fashion
that they can be computed from standardized measurements
of a test target that can be propagated through the system. It
is also very helpful when objective metrics can be readily
calculated from engineering design parameters. In rare cases
an engineering parameter itself may be a useful objective
metric, but typically they are only one contributing factor
among many, and so overall image quality may not even be
monotonically related to them in some cases of practical
interest. A classic example of a very incomplete descriptor
of any perceptual attribute is device resolution.
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We have been able to relate observed quality loss in
JNDs to a number of objective metrics using a single, three-
parameter equation. For simplicity, consider the case of an
image artifact (although cases involving preference, such as
color reproduction, can also be treated with this equation). It
is assumed that below a certain threshold the defect is
undetectable and does not affect quality; and that, well above
threshold, the JND increment (the difference in objective
metric values needed to produce a stimulus difference of one
JND) approaches a constant. The latter condition is desirable
because it makes the objective metric more easily
interpretable, and improves the robustness of extrapolations
(because they are based on straight lines). We often find that
metrics expressed in terms of "linear" quantities must be
logarithmically transformed to meet this criterion, as might
be expected based on the Fechner-Weber Law. Thus, the
JND increment is constant well above threshold but diverges
at threshold, beyond which infinitely large reductions in
objective metric yield no further change in quality loss
because the artifact is already subthreshold. A simple
hyperbolic transitional behavior between these two regimes
is assumed:
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with the sign convention that quality loss is negative. It
may be shown that the curvature parameter Rt is the radius
of curvature at threshold. An example of the application of
this equation is given in the following section.

An Example of an Objective Metric

In this section, the artifact of misregistration is used to
provide an example of objective metric design.
Misregistration is a spatial shift between color records of an
image, as can be seen in extreme form in Sunday comics,
where the colors do not match up with the outlines drawn by
the cartoonist. First, a trial objective metric is proposed. In
this case each color record has an associated weight (the sum
of the weights being normalized to unity), and treating these
weights as if they were masses, a visual "center of gravity"
of the color records, is determined from their relative
displacements.

x w xc i i
i
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where x is an arbitrary coordinate, w is a weight, and i a
color record index. A similar equation applies for the
orthogonal y-coordinate. Next, a "moment of inertia" about
that center is computed.
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The square root of this quantity, which is essentially a
visual RMS error term, is converted to angular subtense at
the eye, to approximately generalize the metric for viewing
distances different from that studied.

Figure 2 shows quality loss against this objective
metric of visual RMS misregistration subtense in arc-
seconds, from the results of a quality ruler experiment. The
regression, based on Eq. 1, was computed using samples
with different degrees of green record shift (circles). It is
usually not too hard to find an objective metric that varies
monotonically with quality loss for a magnitude series; the
challenge is in predicting what will happen when variations
of a fundamentally different nature are made. For example,
what quality loss would be expected if different color records
were shifted, or multiple records were shifted in different
relative directions? Such data are also shown in this figure,
and all lie within or close to the 95% regression confidence
limits, and within one JND of the prediction, indicating
good performance of the objective metric.

1. Green shift
2. Grn shift fit
3. 95% CI +
3. 95% CI -
4. Blue shift
5. Red shift
6. RGB @ 90 deg
7. RGB @ 180 deg
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Figure 2. Quality Loss vs Misregistration Metric

Regressions for different subsets of observer sensitivity
and scene susceptibility are useful in Monte Carlo
calculations of system performance, as discussed later, as
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well as being helpful in making application-specific
predictions. Figure 3 compares results for three different
observer/scene subsets (full/full, more sensitive 50%/most
susceptible 25%, and less sensitive 50%/least susceptible
25%). This level of variability is somewhat lower than we
have observed for most image artifacts.

The primary use of objective metrics in our work has
been to facilitate predictive system modeling of quality
distributions that would be produced by various systems.
However, objective metrics can also be useful in product
literature, patent applications, etc. When benchmarking one
component in a system, it is often helpful to fix the
characteristics of the remainder of the system into one of a
few representative positions, so that the resulting objective
metric measures the component's performance in typical
systems. These standardized metric values can be tracked
over time to measure technological advance in a perceptually
relevant fashion.

1. Avg obs/scene
2. More Sens o/s
3. Less Sens o/s
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Figure 3. Observer and Scene Sensitivity Variations

Prediction of Multivariate Image Quality

It is not, in general, feasible to perform factorial
experiments that fully map out the dependence of quality on
different aspects of a pictorial imaging system. An approach
referred to as the multivariate formalism allows this
situation to be simplified, and has proven to be very
reliable. This approach greatly facilitates the construction of
predictive models of image quality. A set of seemingly
distinct perceptual attributes (e.g., sharpness, noisiness, etc.)
that span the quality variations of interest are identified. The
dependence of overall quality on each attribute, varied one at
a time, is determined. The results are expressed in terms of
JNDs of quality change. Where feasible, the quality changes
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are related to correlating objective metrics. Once the effect of
each attribute alone is known, a variable exponent
Minkowski metric is applied to predict the impact on overall
quality of all the attributes in combination.

    
∆ ∆Q Qi

i
= ∑( ) /ε ε1

The functional form of ε is chosen such that ε decreases
and approaches unity as the ∆Qi tend to zero. Consequently,
this equation has the property that for small quality changes,
the changes in JNDs are approximately additive, but when
large quality changes are involved, the larger individual
contributors dominate. This leads to the result that, if one
problem is serious, fixing a minor problem will not
significantly improve overall quality.

1. Measured
2. Predicted
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Figure 4. Predicted vs Measured Multivariate Image Quality

In Figure 4, data from an experiment widely covarying
sharpness and noise are fit using a variable exponent
Minkowski relationship involving only two degrees of
freedom. The solid line is the line of equality; points above
the line represent overpredictions of quality loss, those
below underpredictions. This test spans the range from
subthreshold noise and excellent sharpness to approximately
20 JNDs of quality loss, corresponding to a "poor" image.
This relationship, with the same values of the two fit
parameters and no new degrees of freedom, has been
successfully used to predict the results of other experiments
involving different attributes, and appears to be quite general
in nature. The expression of the effect of each contributing
attribute in terms of the universal units of JNDs of overall
quality, thereby permitting a single law of combination to
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be written for most attributes, is a key step in this
multivariate formalism.

To apply this multivariate formalism, it is not
necessary to construct a scale of the attribute itself (e.g., a
scale of sharpness, as opposed to quality because of
sharpness). Occasionally, such information is useful, e.g.,
in advertising claims, or in psychophysical research
regarding the perceptual nature of an artifact. In the cases of
sharpness and noise, where such scales have been
determined, the stimulus change required to produce a JND
in a single attribute averages about half as large as that
needed to produce a JND of overall quality.

Sometimes, the presence of one attribute significantly
affects the perception of another attribute. For example, the
presence of noise can mask (reduce the visibility of) artifacts
that involve extended patterns, by visually breaking up the
regularity of the defects. In such cases, samples containing
varying degrees of both the affected and affecting attributes
may be assessed to build an interaction model that permits
prediction of attribute JNDs in the presence of other
attributes.

Constructing System Modeling Software

Key aspects of imaging system models are methods for
propagation of important quantities such as tone and color,
MTF, and NPS from the original scene to the final viewed
reproduction. Propagation of tone and color is based on
sensitometry or digital transforms, with interactions between
color channels (including chemical interimage effects)
handled via equivalent matrixing or three-dimensional look-
up tables. Propagation of MTF is usually via a linear
systems approximation. Despite the fact that the
assumptions underlying this theory are routinely violated to
an easily measured degree by individual components of a
system, the predictions made for full imaging systems are
remarkably good. In some instances, the utility of this
approach can be extended by empirical measurement or
analysis guidelines. Extension of the standard approach to
describe color systems, with channels interactions described
by matrixing, is feasible.

Propagation of NPS is usually via the Doerner
Equation,2 extended to color systems via matrixing. Noise
propagation depends on MTF and tone scale propagation as
well, and so provides a very rigorous test of system models.
Figure 5 compares print grain index3 (a logarithmic visual
RMS granularity metric) measured by reflection
microdensitometry with predicted values for negative film
printed optically onto color paper. The data spans the range
from near-threshold noise to that encountered in
enlargements from high-speed film. The predictions are
based on first principles analytical modeling using
component data such as film granularity, sensitometry, and
dye set spectra; paper spectral sensitivity, dye set, MTF and
granularity; printing lens MTF; and printing and viewing
illuminants. The agreement between predicted and measured
values is excellent, with the largest errors being on the order
of one 50% JND of quality.   
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1. Measured
2. Predicted
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Figure 5. Predicted vs Measured Print Grain Index

To predict final image perception, colorimetric
quantities, MTF and NPS are combined with visual models
of varying complexity to yield objective metrics
characterizing an array of image quality attributes. The
prediction of system performance requires the merging of
capability models with Monte Carlo techniques and
availability of relevant variability data. Examples of the
practical application of capability and performance modeling
will be discussed in the following presentation.1

We have incorporated our image quality modeling
capabilities into a single, unified software package. A
graphical interface allows the user to construct a block
diagram of their system. Each component icon has
associated data entry screens, which are modified in real-time
in accordance with the other components in the system and
their specified characteristics. The user entries are
extensively audited for validity so that nearly all invocations
of the computational engine result in successful
calculations. There is detailed on-line help with both
information on use of the software and literature citations.
The software is linked directly to a database of measurements
that have been carried out in accordance with well-
documented protocols. In addition, numerous built-in
calculations permit estimates of measured quantities from a
small number of engineering design parameters. For
example, the MTF of a monitor having a good compromise
between sharpness and raster line visibility can be readily
estimated from the monitor pixel pitch. Such parametric
calculations are extremely valuable early in product design
for setting specifications, and also are helpful when carrying
out more general analyses, such as for strategic planning.
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Verification of Modeling

The Advanced Photo System design and development were
strongly influenced by system modeling, which plays an
especially important role when working with partners, or
when creating a system spanning many suppliers, both of
which were applicable in this case. This system presented a
particularly rigorous test of the validity of the image quality
modeling because nearly every aspect of the system differed
from that of its predecessors. The films, format size,
cameras, magnetically encoded information, printer lenses,
printing magnifications, and print sizes all departed
substantially from existing photographic systems. Several
perceptual effects needed to be accurately modeled to predict
the perceived quality of panoramic prints because of their
high aspect ratio. Panoramic prints are made at about 2.5×
higher magnification than standard 4R prints from 35-mm
format, leading to lower sharpness and higher noise.
However, these factors are partially offset by the longer
viewing distances and higher intrinsic quality associated with
larger images.
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Figure 6. Predicted vs Measured Image Quality Distribution

Once the system was developed, large customer
intercept surveys were performed, allowing verification of
modeling predictions. Figure 6 compares the quality
distribution of 8500 consumer images, evaluated against
physical standards by trained experts, with the distribution
predicted by our modeling at the time of product design. The
x-axis is quality in JNDs, with higher quality to the right,
and the y-axis cumulative frequency, i.e., the fraction of
images having quality less than or equal to x. The modeling
predictions are in terms of the same standard scale of quality
as represented by the physical standards, so there are no
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adjustments whatsoever to the data shown in this figure. The
agreement is good to one JND and/or 5% cumulative
probability over the entire quality distribution, an extremely
satisfying result. This superb agreement provides a dramatic
confirmation of the success of the approach described herein.

Conclusion

A consistent and integrated approach to the characterization
and modeling of image quality has yielded computer models
capable of quantitative predictions of imaging system
performance. This capability will be of even greater value,
as digital imaging, with its inherent flexibility, becomes
more prevalent.
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